人工智能整體技術(shù)體系和國(guó)內(nèi)外發(fā)展情況

時(shí)間:2018-04-12

來(lái)源:網(wǎng)絡(luò)轉(zhuǎn)載

導(dǎo)語(yǔ):人工智能作為新一輪產(chǎn)業(yè)變革的核心驅(qū)動(dòng)力,將進(jìn)一步釋放歷次科技革命和產(chǎn)業(yè)變革積蓄的巨大能量,并創(chuàng)造新的強(qiáng)大引擎,推動(dòng)智能經(jīng)濟(jì)和智能社會(huì)的發(fā)展。本文嘗試從根技術(shù)、核心共性技術(shù)、智能應(yīng)用技術(shù)、典型應(yīng)用場(chǎng)景四個(gè)層面勾勒人工智能技術(shù)的整體技術(shù)體系和國(guó)內(nèi)外發(fā)展情況。

人工智能作為新一輪產(chǎn)業(yè)變革的核心驅(qū)動(dòng)力,將進(jìn)一步釋放歷次科技革命和產(chǎn)業(yè)變革積蓄的巨大能量,并創(chuàng)造新的強(qiáng)大引擎,推動(dòng)智能經(jīng)濟(jì)和智能社會(huì)的發(fā)展。本文嘗試從根技術(shù)、核心共性技術(shù)、智能應(yīng)用技術(shù)、典型應(yīng)用場(chǎng)景四個(gè)層面勾勒人工智能技術(shù)的整體技術(shù)體系和國(guó)內(nèi)外發(fā)展情況。

近年來(lái),人工智能已經(jīng)成為國(guó)際科技競(jìng)爭(zhēng)的新焦點(diǎn)。作為多學(xué)科交叉結(jié)果和通用型技術(shù),人工智能技術(shù)同上下游的相關(guān)技術(shù)和應(yīng)用一起形成了錯(cuò)綜復(fù)雜的技術(shù)體系網(wǎng)絡(luò)。這一網(wǎng)絡(luò)目前初見(jiàn)雛形,但仍處于快速更新、劇烈變化的動(dòng)態(tài)發(fā)展?fàn)顟B(tài)。經(jīng)過(guò)多方資料的匯總和梳理,本文嘗試從根技術(shù)、核心共性技術(shù)、智能應(yīng)用技術(shù)、典型應(yīng)用場(chǎng)景四個(gè)層面勾勒人工智能技術(shù)的整體技術(shù)體系和國(guó)內(nèi)外發(fā)展情況。初步研判,目前人工智能產(chǎn)業(yè)的發(fā)展存在著兩個(gè)主要趨勢(shì):一是不斷拓展、深挖核心技術(shù);二是積極尋求在傳統(tǒng)產(chǎn)業(yè)的應(yīng)用空間。

一、根技術(shù):廣泛融合,不斷擴(kuò)展

數(shù)學(xué)與工程學(xué)始終是人工智能發(fā)展過(guò)程中的重要基石。例如1956年達(dá)特茅斯會(huì)議以來(lái),控制論曾長(zhǎng)期處于人工智能研究的主導(dǎo)理論地位;機(jī)器學(xué)習(xí)算法的發(fā)展過(guò)程則可視為數(shù)學(xué)方法不斷演進(jìn)的過(guò)程。

80年代人工智能的主流理論逐漸演化為信息論,同期也誕生了深度學(xué)習(xí)算法。深度學(xué)習(xí)算法能夠在近年獲得成功除了得益于自身算法的不斷完善,還應(yīng)歸因于三十年來(lái)信息學(xué)與計(jì)算機(jī)科學(xué)的快速發(fā)展。尤其是大數(shù)據(jù)技術(shù)的發(fā)展提供了前所未有的豐富數(shù)據(jù),使得各類機(jī)器學(xué)習(xí)算法獲得了充足的學(xué)習(xí)資源;而計(jì)算性能的提升也保證了其潛力的充分發(fā)揮。

出于對(duì)人類智能的追求,腦科學(xué)與認(rèn)知科學(xué)在人工智能的各個(gè)發(fā)展階段都是主要參與學(xué)科之一。例如人工神經(jīng)網(wǎng)絡(luò)的數(shù)學(xué)理論雛形就是在心理學(xué)家WarrenMcculloch的參與下產(chǎn)生的。當(dāng)前類腦智能更被認(rèn)為是人工智能的未來(lái)發(fā)展方向之一,因此對(duì)腦科學(xué)與認(rèn)知科學(xué)的研究仍將受到廣泛關(guān)注。相關(guān)研究可以分為關(guān)注基因、蛋白質(zhì)、神經(jīng)元、化學(xué)信號(hào)、電信號(hào)的“硬件研究”和關(guān)注認(rèn)知、行為、心理的“軟件研究”兩大類。目前普遍認(rèn)為后者對(duì)于類腦智能的研發(fā)更具指導(dǎo)意義。

多項(xiàng)不同根技術(shù)的廣泛融合成就了當(dāng)前人工智能技術(shù)的高速發(fā)展。同時(shí)這一融合范圍還在不斷擴(kuò)大。例如隨著智能芯片的發(fā)展,集成電路相關(guān)技術(shù)已經(jīng)成為了人工智能技術(shù)體系的一部分;量子計(jì)算也被納入人工智能的技術(shù)網(wǎng)絡(luò)中。人工智能的多學(xué)科交叉特色將會(huì)越來(lái)越顯著。

二、核心共性技術(shù)

核心共性技術(shù)大致可以分為人工智能芯片、基礎(chǔ)算法和系統(tǒng)平臺(tái)三類。在具體應(yīng)用中,各種不同算法是系統(tǒng)平臺(tái)的基礎(chǔ);人工智能芯片作為硬件是算法的基礎(chǔ)。但在實(shí)際的創(chuàng)新鏈中,人工智能芯片也是基于基礎(chǔ)算法的特點(diǎn)、需求和指導(dǎo)而開(kāi)發(fā)的?;A(chǔ)算法是人工智能技術(shù)發(fā)展的根本核心。

1.基礎(chǔ)算法:創(chuàng)新活躍,任重道遠(yuǎn)

早期計(jì)算智能算法主要模仿了人類智能的“知識(shí)表示與推理”功能。雖然出現(xiàn)了專家系統(tǒng)、幾何證明機(jī)、“深藍(lán)”等案例,但整體上仍存在效率低下、維護(hù)性差、性價(jià)比低等難以克服的問(wèn)題,未能取得商業(yè)成功。

機(jī)器學(xué)習(xí)算法則更進(jìn)一步,在形式上模擬了人腦的學(xué)習(xí)功能,即重復(fù)訓(xùn)練次數(shù)多的“思考”過(guò)程會(huì)被強(qiáng)化。這一突破性進(jìn)步能夠大大提升人工智能系統(tǒng)的運(yùn)行效率,并降低編碼成本。人工神經(jīng)網(wǎng)絡(luò)算法是機(jī)器學(xué)習(xí)算法的重要分支,初步借鑒了人腦神經(jīng)元的某些運(yùn)算機(jī)制。深度學(xué)習(xí)算法是人工神經(jīng)網(wǎng)絡(luò)算法的一個(gè)拓展,通過(guò)多層神經(jīng)網(wǎng)絡(luò),形成比淺層結(jié)構(gòu)簡(jiǎn)單學(xué)習(xí)更強(qiáng)大的從少數(shù)樣本集中歸納數(shù)據(jù)集本質(zhì)特征的能力。近年來(lái),算法方面的研究始終處于頻繁更新、快速迭代的狀態(tài)。目前單純的深度學(xué)習(xí)算法已經(jīng)略顯“過(guò)時(shí)”。在其基礎(chǔ)上開(kāi)發(fā)的卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)、遞歸深度神經(jīng)網(wǎng)絡(luò)等成為最新前沿。此外現(xiàn)有算法的交叉組合,例如深度學(xué)習(xí)算法同強(qiáng)化學(xué)習(xí)算法綜合形成的深度強(qiáng)化學(xué)習(xí)方法等也逐步成為新的熱點(diǎn)。在計(jì)算智能算法和機(jī)器學(xué)習(xí)算法的研發(fā)方面,歐美大學(xué)占據(jù)絕對(duì)的領(lǐng)跑地位。全球排名前30的高校中,美國(guó)高校占比最高,達(dá)到22家;我國(guó)高校無(wú)一上榜。

盡管在目前獲得了一定的成功,但機(jī)器學(xué)習(xí)算法的機(jī)理仍然是統(tǒng)計(jì)擬合、暴力計(jì)算,并不具備真正的基于理解的學(xué)習(xí)、推理和決策能力,因此在應(yīng)用中仍具有極大的局限性。部分專家甚至認(rèn)為機(jī)器學(xué)習(xí)算法無(wú)法真正解決自然語(yǔ)言翻譯、全自主自動(dòng)駕駛等熱點(diǎn)問(wèn)題。當(dāng)前比較明確的面向未來(lái)的前沿算法基礎(chǔ)理論中,高級(jí)機(jī)器學(xué)習(xí)仍然無(wú)法突破機(jī)器學(xué)習(xí)的框架;量子計(jì)算主要是配合高級(jí)機(jī)器學(xué)習(xí)的發(fā)展;類腦智能計(jì)算則被許多專家視為新一代人工智能技術(shù)的突破口。近期美、日、德、法、歐盟和以色列等主要國(guó)家和地區(qū)都開(kāi)展了腦科學(xué)與人工智能的聯(lián)合研究,但眾多現(xiàn)有類腦智能研究都主要以利用人工智能工具研究腦科學(xué)為主,對(duì)人工智能研究的推動(dòng)不足。將兩方面研究緊密結(jié)合的機(jī)構(gòu)僅有麻省理工學(xué)院、卡內(nèi)基·梅隆大學(xué)和加州大學(xué)伯克利分校等少數(shù)高校。整體而言,新一代人工智能的基礎(chǔ)算法研究仍然任重道遠(yuǎn)。

2.人工智能芯片:多路線競(jìng)爭(zhēng),分領(lǐng)域發(fā)展

目前的人工智能芯片根據(jù)技術(shù)路線可分類三類。首先是通用型的CPU及GPU芯片。CPU的架構(gòu)和指令集對(duì)神經(jīng)網(wǎng)絡(luò)計(jì)算的兼容度不夠,性價(jià)比和運(yùn)算效率偏低。但英特爾、ARM在新的CPU產(chǎn)品XeonPhi和DynamIQ中強(qiáng)化了對(duì)神經(jīng)網(wǎng)絡(luò)計(jì)算的支持。GPU的架構(gòu)比CPU更有利于相關(guān)算法的運(yùn)行。傳統(tǒng)的GPU廠商英偉達(dá)和AMD分別推出了TeslaV100和RadeonInstinctMI25來(lái)開(kāi)拓人工智能芯片的市場(chǎng)空間。英特爾也通過(guò)收購(gòu)的方式推出了Nervana以進(jìn)入GPU領(lǐng)域。

第二類是FPGA芯片。FPGA具有可定制的特點(diǎn),使用者可以對(duì)芯片進(jìn)行二次開(kāi)發(fā)使其更加適宜特定的運(yùn)算環(huán)境。由于犧牲了通用性,F(xiàn)PGA芯片的價(jià)格相對(duì)CPU和GPU而言較為便宜。目前Xilinx、Altera、Microsemi、Lattice等少數(shù)廠商基本壟斷了FPGA的生產(chǎn)。英特爾通過(guò)收購(gòu)Altera也進(jìn)入了FPGA芯片的生產(chǎn)環(huán)節(jié)?;谕赓?gòu)芯片,微軟、百度等領(lǐng)先企業(yè)均具有較強(qiáng)的二次開(kāi)發(fā)能力。百度已經(jīng)推出了基于FPGA的百度大腦芯片。

第三類是ASIC芯片。此類芯片是徹底的專用芯片,也不具備編輯功能。設(shè)計(jì)新ASIC芯片的前期投入較高,但大規(guī)模生產(chǎn)后能夠?qū)崿F(xiàn)極低廉的成本。ASIC芯片對(duì)特定計(jì)算的運(yùn)行效率極高,但也僅能應(yīng)用于特定計(jì)算。目前ASIC芯片分兩個(gè)技術(shù)方向。(1)脈沖神經(jīng)網(wǎng)絡(luò)芯片,以IBM的TureNorth為代表,以脈沖長(zhǎng)短模擬大腦神經(jīng)元間的交流活動(dòng)。(2)機(jī)器學(xué)習(xí)芯片,以谷歌TPU和我國(guó)寒武紀(jì)為代表,以概率變化模擬大腦神經(jīng)元間的交流活動(dòng)。比較而言,后者直接針對(duì)機(jī)器學(xué)習(xí)算法的需要,目前在商業(yè)化應(yīng)用競(jìng)爭(zhēng)中占據(jù)優(yōu)勢(shì),高通的Zeroth即是從早期的脈沖神經(jīng)網(wǎng)絡(luò)芯片轉(zhuǎn)為現(xiàn)今的機(jī)器學(xué)習(xí)芯片方向。前者仍需憶阻器等基本原件的進(jìn)一步發(fā)展,但對(duì)于類腦算法研究而言有著長(zhǎng)遠(yuǎn)的意義。

整體而言,三類人工智能芯片各有特點(diǎn),都具有對(duì)應(yīng)的潛在細(xì)分市場(chǎng)空間。不同場(chǎng)合下對(duì)通用性、成本、性能的不同要求會(huì)產(chǎn)生不同的解決方案。蘋(píng)果A11、華為麒麟970中的人工智能模塊以及谷歌TPU都只是用于配合CPU完成特定運(yùn)算。

3系統(tǒng)平臺(tái):多方混戰(zhàn),搶占地盤(pán)

實(shí)際應(yīng)用中,可能被用到的大量不同基礎(chǔ)算法需要整合成為集成化、高度兼容的軟件工具來(lái)發(fā)揮作用。較完備的工具軟件包形成了穩(wěn)定的系統(tǒng)環(huán)境。圍繞一些開(kāi)源系統(tǒng)往往還會(huì)形成全球共享的研究成果交流平臺(tái)。在系統(tǒng)平臺(tái)領(lǐng)域搶占話語(yǔ)權(quán),就能在人工智能時(shí)代形成類似PC時(shí)代Windows系統(tǒng)或手機(jī)時(shí)代安卓系統(tǒng)的優(yōu)勢(shì)市場(chǎng)地位。當(dāng)前人工智能系統(tǒng)平臺(tái)處于活躍發(fā)展、普遍競(jìng)爭(zhēng)的狀態(tài),尚未產(chǎn)生穩(wěn)定格局。Facebook、IBM等大公司和許多創(chuàng)業(yè)型小公司都推出了自己的開(kāi)源項(xiàng)目。蘋(píng)果通過(guò)收購(gòu)Turi公司涉足了這一領(lǐng)域。我國(guó)的百度也在近期推出了自己的開(kāi)源平臺(tái)PaddlePaddle。谷歌則完全基于其TensorFlow平臺(tái)設(shè)計(jì)出了TPU芯片,在戰(zhàn)略層面打通了軟硬件市場(chǎng)的布局。

三、智能應(yīng)用技術(shù):感知、決策、執(zhí)行集成化

智能應(yīng)用技術(shù)是核心共性技術(shù)基礎(chǔ)上的具體應(yīng)用研究,主要是解決了某種特定類型問(wèn)題的解決方案。某項(xiàng)專項(xiàng)技術(shù)可能用于許多不同的應(yīng)用場(chǎng)景;特定應(yīng)用場(chǎng)景也往往包含了多項(xiàng)專項(xiàng)技術(shù)。

智能傳感器方面,目前國(guó)際一流傳感器的市場(chǎng)基本被外國(guó)公司所壟斷,我國(guó)的產(chǎn)業(yè)和研發(fā)實(shí)力明顯處于劣勢(shì)。模式識(shí)別在廣義上既包括一些共性理論,也包括在語(yǔ)音、圖像、自然語(yǔ)言分析等方面的具體識(shí)別技術(shù),在此分別表述為模式識(shí)別理論和感知與理解技術(shù)。智能決策分析則主要側(cè)重?cái)?shù)據(jù)挖掘方向的專項(xiàng)應(yīng)用。機(jī)器人、無(wú)人機(jī)、自動(dòng)駕駛汽車也開(kāi)始大量應(yīng)用基于機(jī)器學(xué)習(xí)的智能控制技術(shù)。此外,人機(jī)交互也是當(dāng)前的重點(diǎn)之一。

以往在機(jī)器人及自動(dòng)化領(lǐng)域的研究中,經(jīng)常依照感知、決策、執(zhí)行三個(gè)環(huán)節(jié)來(lái)分析其技術(shù)體系,人工智能的發(fā)展則逐步模糊了三者的邊界。例如機(jī)器視覺(jué)既包含基于視覺(jué)傳感器的感知環(huán)節(jié),也是對(duì)視覺(jué)信號(hào)進(jìn)行分析處理和判斷的決策環(huán)節(jié)。人機(jī)交互則同時(shí)涉及了以人為對(duì)象的感知和執(zhí)行兩個(gè)環(huán)節(jié)。未來(lái)人工智能技術(shù)將進(jìn)一步推動(dòng)感知、決策、執(zhí)行的集成化水平。

四、典型應(yīng)用場(chǎng)景:熱點(diǎn)集中,各顯神通

以新增企業(yè)的業(yè)務(wù)方向?yàn)闃?biāo)準(zhǔn),近年人工智能產(chǎn)業(yè)關(guān)注度最集中的細(xì)分領(lǐng)域?yàn)闄C(jī)器視覺(jué)、自然語(yǔ)言處理和自動(dòng)駕駛。這三類專項(xiàng)智能技術(shù)所派生的應(yīng)用場(chǎng)景也是當(dāng)前人工智能市場(chǎng)的主要熱點(diǎn)。例如機(jī)器視覺(jué)技術(shù)發(fā)展出的網(wǎng)絡(luò)圖像審核、人臉識(shí)別、虹膜識(shí)別、設(shè)備登錄驗(yàn)證、金融身份驗(yàn)證、安防監(jiān)控等應(yīng)用;自然語(yǔ)言處理技術(shù)發(fā)展出的語(yǔ)音輸入、機(jī)器翻譯、擬人交流、智能客服等應(yīng)用。

這些焦點(diǎn)應(yīng)用中,比較成熟的自然語(yǔ)言處理、機(jī)器視覺(jué)及圖像識(shí)別、語(yǔ)音識(shí)別等基本都局限在信息產(chǎn)業(yè)之內(nèi)。能夠同實(shí)體經(jīng)濟(jì)掛鉤的自動(dòng)駕駛雖然獲得廣泛關(guān)注但短期內(nèi)尚難以突破。目前尋找能夠?qū)觽鹘y(tǒng)制造和服務(wù)業(yè)的應(yīng)用點(diǎn)是人工智能產(chǎn)業(yè)發(fā)展的重要任務(wù),也是人工智能“通用型”應(yīng)用的必然需要。

目前對(duì)新應(yīng)用領(lǐng)域的探索主要分為三種情況。(1)龍頭引領(lǐng),即領(lǐng)先企業(yè)的戰(zhàn)略意志推動(dòng)新應(yīng)用市場(chǎng)的開(kāi)辟,并利用技術(shù)、資金、影響力等方面的優(yōu)勢(shì)而暫時(shí)處于無(wú)人競(jìng)爭(zhēng)的狀態(tài)。例如IBM基于沃森所提供的醫(yī)療診斷、法律咨詢等服務(wù),以及阿里巴巴所提出的城市大腦。(2)主動(dòng)吸收,即一些專業(yè)性較強(qiáng)的行業(yè)主動(dòng)吸收人工智能方法改善自身產(chǎn)品水平,主導(dǎo)者是業(yè)內(nèi)原有的成熟主體而非新興的人工智能企業(yè)。這也是最能體現(xiàn)人工智能“通用型”的應(yīng)用類型。例如財(cái)務(wù)分析、科研輔助、交融交易分析等。(3)有待開(kāi)拓,即相關(guān)領(lǐng)域理論上存在應(yīng)用人工智能的可能,但尚缺乏實(shí)用性強(qiáng)、市場(chǎng)空間大的成熟產(chǎn)品。例如防災(zāi)減災(zāi)、基礎(chǔ)設(shè)施維護(hù)、智能制造、智能教育等。

中傳動(dòng)網(wǎng)版權(quán)與免責(zé)聲明:

凡本網(wǎng)注明[來(lái)源:中國(guó)傳動(dòng)網(wǎng)]的所有文字、圖片、音視和視頻文件,版權(quán)均為中國(guó)傳動(dòng)網(wǎng)(www.wangxinlc.cn)獨(dú)家所有。如需轉(zhuǎn)載請(qǐng)與0755-82949061聯(lián)系。任何媒體、網(wǎng)站或個(gè)人轉(zhuǎn)載使用時(shí)須注明來(lái)源“中國(guó)傳動(dòng)網(wǎng)”,違反者本網(wǎng)將追究其法律責(zé)任。

本網(wǎng)轉(zhuǎn)載并注明其他來(lái)源的稿件,均來(lái)自互聯(lián)網(wǎng)或業(yè)內(nèi)投稿人士,版權(quán)屬于原版權(quán)人。轉(zhuǎn)載請(qǐng)保留稿件來(lái)源及作者,禁止擅自篡改,違者自負(fù)版權(quán)法律責(zé)任。

如涉及作品內(nèi)容、版權(quán)等問(wèn)題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。

關(guān)注伺服與運(yùn)動(dòng)控制公眾號(hào)獲取更多資訊

關(guān)注直驅(qū)與傳動(dòng)公眾號(hào)獲取更多資訊

關(guān)注中國(guó)傳動(dòng)網(wǎng)公眾號(hào)獲取更多資訊

最新新聞
查看更多資訊

娓娓工業(yè)

廣州金升陽(yáng)科技有限公司

熱搜詞
  • 運(yùn)動(dòng)控制
  • 伺服系統(tǒng)
  • 機(jī)器視覺(jué)
  • 機(jī)械傳動(dòng)
  • 編碼器
  • 直驅(qū)系統(tǒng)
  • 工業(yè)電源
  • 電力電子
  • 工業(yè)互聯(lián)
  • 高壓變頻器
  • 中低壓變頻器
  • 傳感器
  • 人機(jī)界面
  • PLC
  • 電氣聯(lián)接
  • 工業(yè)機(jī)器人
  • 低壓電器
  • 機(jī)柜
回頂部
點(diǎn)贊 0
取消 0