時(shí)間:2007-04-17 11:36:00來(lái)源:lihan
圖1 異步電機(jī)速度控制器系統(tǒng)的集成化結(jié)構(gòu)
圖2 三相繞組與二相繞組的軸線設(shè)定 [/ALIGN]
FPGA將半定制器件邏輯集成度高的優(yōu)點(diǎn)與標(biāo)準(zhǔn)邏輯器件開發(fā)周期短和開發(fā)成本低的優(yōu)點(diǎn)結(jié)合在一起后,具有結(jié)構(gòu)靈活、高密度、高性能、開發(fā)工具先進(jìn)、編程完畢后的成品無(wú)需測(cè)試和可實(shí)時(shí)在線檢驗(yàn)等優(yōu)點(diǎn)。本文介紹的異步電動(dòng)機(jī)矢量控制調(diào)速系統(tǒng)按照模塊化設(shè)計(jì)的基本思想,研究電流矢量控制、速度PI調(diào)節(jié)、電流 PI調(diào)節(jié)、反饋速度測(cè)量、電流磁鏈轉(zhuǎn)換、SVPWM、 Clarke變換、 Park變換和Park逆變換等幾個(gè)主要功能模塊的數(shù)字結(jié)構(gòu),并在單片Xilinx FPGA 中完成了主要模塊的布局布線,實(shí)現(xiàn)異步電機(jī)矢量控制速度控制器的專用集成電路[3]。
一.矢量控制的基本原理
設(shè)異步電機(jī)三相繞組(A、B、C)與二相繞組(α、β)的軸線設(shè)定如圖2所示,A相繞組軸線與α相繞組軸線重合,都是靜止坐標(biāo),分別對(duì)應(yīng)的交流電流為iA、iB、iC和iα、iβ。采用磁勢(shì)分布和功率不變的絕對(duì)變換,三相交流電流在空間產(chǎn)生的磁勢(shì)F與二相交流電流產(chǎn)生的磁勢(shì)相等。即采用正交變換矩陣,則其正變換公式為:

圖3 α-β坐標(biāo) [/ALIGN]
矢量控制亦稱磁場(chǎng)定向控制,其基本思路是:模擬直流電機(jī)的控制方法進(jìn)行控制,根據(jù)磁勢(shì)和功率不變的原則通過(guò)正交變換,將三相靜止坐標(biāo)變換成二相靜止坐標(biāo)(Clarke變換即3Φ/α-β變換,其坐標(biāo)變換關(guān)系如圖2,定量關(guān)系如公式(1)),然后通過(guò)旋轉(zhuǎn)變換將二相靜止坐標(biāo)變成二相旋轉(zhuǎn)坐標(biāo)(Park變換,即(α-β/d-q變換,坐標(biāo)變換關(guān)系如圖3,定量關(guān)系如公式(3))。在α-β/d-q變換下將定子電流矢量分解成按轉(zhuǎn)子磁場(chǎng)定向的2個(gè)直流分量id、iq(其中id為勵(lì)磁電流分量,iq為轉(zhuǎn)矩電流分量),并對(duì)其分別加以控制,控制id就相當(dāng)于控制磁通,而控制iq就相當(dāng)于控制轉(zhuǎn)矩。
2個(gè)直流分量id和iq分別由速度和電流PI調(diào)節(jié)器經(jīng)電流電壓變換和Clarke逆變換(坐標(biāo)變換關(guān)系如圖2,定量關(guān)系如公式(2))、Park逆變換(坐標(biāo)變換關(guān)系如圖3,定量關(guān)系如式(4))和電壓空間矢量變換后,獲得控制逆變器的6路PWM信號(hào),從而實(shí)現(xiàn)對(duì)異步電機(jī)的變壓變頻控制。
二.控制器的數(shù)字硬件設(shè)計(jì)
異步電機(jī)速度控制器的數(shù)字硬件設(shè)計(jì)主要包括Clarke變換、Clarke逆變換;Park變換、Park逆變換;電流PI調(diào)節(jié)模塊、速度PI調(diào)節(jié)模塊;電壓空間矢量模塊;轉(zhuǎn)子磁鏈計(jì)算模塊和速度檢測(cè)模塊等幾個(gè)不同部分。矢量控制異步電機(jī)調(diào)速系統(tǒng)的主電路和數(shù)據(jù)運(yùn)算路徑如圖4所示。
2.1.矢量變換模塊設(shè)計(jì)
矢量變換包括相坐標(biāo)以及坐標(biāo)旋轉(zhuǎn)正變換和反變換,式(1)~(4)給出了相應(yīng)變換的定量運(yùn)算公式。其中式(1)、(2)的數(shù)字實(shí)現(xiàn)比較簡(jiǎn)單,1個(gè)加法器和1個(gè)乘法器就可以完成變換運(yùn)算;式(3)、(4)確定的坐標(biāo)旋轉(zhuǎn)正變換和逆變換,在工程實(shí)踐中可以采用查正弦表或泰勒級(jí)數(shù)展開的方式進(jìn)行計(jì)算,從而完成相應(yīng)的功能。
2.2 PI調(diào)節(jié)器模塊設(shè)計(jì)
[ALIGN=CENTER]
圖4 速度控制器的數(shù)據(jù)路徑[/ALIGN]
電流內(nèi)環(huán)和速度外環(huán)都是按PI控制策略進(jìn)行調(diào)節(jié)的,式(5)為雙線性變換PI調(diào)節(jié)器的迭代公式。
O[n]=P[n]+I[n] (5)
其中比例項(xiàng)迭代公式為:
P[n]=Kp·E[n] (6)
積分項(xiàng)迭代公式為:
I[n]=I[n-1]+Kh(E[n]+E[n-1]) (7)
式中E[n]為誤差輸入,Kp為比例增益,Kh為積分增益,Kp和Kh的范圍由電機(jī)參數(shù)決定,并且需要通過(guò)實(shí)驗(yàn)來(lái)確定其具體值。為防止溢出,調(diào)節(jié)器設(shè)置了飽和限制。電流PI調(diào)節(jié)器輸出的是電壓指令,以調(diào)制系數(shù)的形式經(jīng)過(guò)補(bǔ)償后送給SVPWM模塊;速度PI調(diào)節(jié)器輸出的是參考電流指令,直接送給電流調(diào)節(jié)器。不管是電流調(diào)節(jié)器還是速度調(diào)節(jié)器,如果參考指令值比較大,其積分器就有可能會(huì)建立起一個(gè)很大的誤差值,并且由于積分器的慣性作用,這個(gè)誤差會(huì)一直保持較長(zhǎng)時(shí)間,從而將導(dǎo)致過(guò)大的超調(diào)。因此在設(shè)計(jì)PI調(diào)節(jié)器時(shí),應(yīng)當(dāng)在積分器的輸出超過(guò)限定值時(shí)立即關(guān)閉積分作用,以減少過(guò)度超調(diào)的影響。
2.3 M/T法測(cè)速模塊設(shè)計(jì)
基于轉(zhuǎn)子磁場(chǎng)定向的異步電機(jī)矢量控制變頻調(diào)速控制器的關(guān)鍵問(wèn)題是轉(zhuǎn)子位置及反饋速度的測(cè)量。本方案采用增量式光電碼盤及霍爾元件作為位置檢測(cè)器件,在上電復(fù)位時(shí)由霍爾元件粗略檢測(cè)電機(jī)轉(zhuǎn)子的初始位置進(jìn)行軟啟動(dòng),當(dāng)碼盤的Z脈沖出現(xiàn)后就可以得到精確的位置信息。位置計(jì)數(shù)則按碼盤的2個(gè)正交輸出脈沖QEP1和QEP2的4倍頻進(jìn)行,其脈沖波形如圖5所示。轉(zhuǎn)速是利用M/T法進(jìn)行測(cè)量的。M/T法是在M法的基礎(chǔ)上吸取T法的優(yōu)點(diǎn),其測(cè)量轉(zhuǎn)速的過(guò)程為:在轉(zhuǎn)速輸出脈沖的下降沿啟動(dòng)定時(shí)器(定時(shí)長(zhǎng)度為Tc),同時(shí)記錄轉(zhuǎn)速輸出脈沖個(gè)數(shù)ml和時(shí)鐘脈沖個(gè)數(shù)m2。測(cè)量時(shí)間到,先停止對(duì)轉(zhuǎn)速輸出脈沖個(gè)數(shù)的計(jì)數(shù),待下一個(gè)轉(zhuǎn)速輸出脈沖下降沿到來(lái)時(shí),再停止對(duì)時(shí)鐘脈沖計(jì)數(shù),以保證測(cè)到整個(gè)轉(zhuǎn)速傳感器的輸出脈沖。所設(shè)的基本測(cè)量時(shí)間TC可避免T法因轉(zhuǎn)速高導(dǎo)致測(cè)量時(shí)間減小的缺點(diǎn);同時(shí)讀取對(duì)時(shí)鐘脈沖的計(jì)數(shù)值可避免M法因轉(zhuǎn)速降低導(dǎo)致精度變差的缺點(diǎn)。其測(cè)量時(shí)間為:
[ALIGN=CENTER]
圖5 脈沖波形
圖6 M/T法測(cè)速原理[/ALIGN]
2.4 電壓空間矢量模塊設(shè)計(jì)
電壓空間矢量脈寬調(diào)制法也稱磁鏈追蹤型PWM法,該方法把電動(dòng)機(jī)與逆變器看為一體,側(cè)重于以電動(dòng)機(jī)獲得幅值恒定的圓形磁場(chǎng)為目標(biāo),以三相對(duì)稱正弦電壓供電時(shí)交流電動(dòng)機(jī)中的理想磁鏈為基準(zhǔn),用逆變器不同的開關(guān)模式所產(chǎn)生的磁鏈有效矢量來(lái)逼近基準(zhǔn)圓。理論分析和實(shí)驗(yàn)表明SVPWM調(diào)制的脈動(dòng)轉(zhuǎn)矩小,噪音低和直流電壓利用率高(比普通的SPWM調(diào)制約高15%)。這種控制方法在變頻器、逆變器中得到了廣泛的應(yīng)用。電壓空間矢量結(jié)構(gòu)框圖如圖7所示。
[ALIGN=CENTER]
圖7 電壓空間矢量硬件結(jié)構(gòu)[/ALIGN]
圖中對(duì)稱/不對(duì)稱波形發(fā)生器、輸出邏輯電路、空間矢量狀態(tài)機(jī)的合成由比較控制寄存器的相應(yīng)位進(jìn)行控制,具體工作原理可參見文獻(xiàn)[5]、[6]。
除了上述主要模塊外,還有通信模塊、寄存器堆以及監(jiān)控和保護(hù)等輔助性模塊,其中通信模塊主要用來(lái)與DSP或主機(jī)交換數(shù)據(jù)(見圖1)。所有這些模塊構(gòu)成了一個(gè)完整的速度隨動(dòng)控制器,并在1片F(xiàn)PGA中實(shí)現(xiàn)。
三.硬件設(shè)計(jì)的FPGA實(shí)現(xiàn)與實(shí)驗(yàn)結(jié)果
基于矢量控制的高性能異步電機(jī)速度控制器設(shè)計(jì)電路中的所有模塊均用硬件語(yǔ)言VHDL進(jìn)行描述。在源代碼通過(guò)功能仿真與時(shí)序仿真測(cè)試后,再經(jīng)過(guò) SynPlify軟件綜合生成EDF網(wǎng)表文件,最后在Xilinx的FPGA(SpartanⅡE一XC2S300E)器件中實(shí)現(xiàn),其中器件的布局和布線在Xilinx集成開發(fā)環(huán)境ISE5.li中完成。系統(tǒng)資源利用情況如表1所示,整個(gè)設(shè)計(jì)消耗的等效門數(shù)約為350 000,基本接近飽和。若考慮到將來(lái)的功能擴(kuò)展,則需要容量更大的芯片,但現(xiàn)有設(shè)計(jì)可重復(fù)利用,無(wú)需作較大的修改[7]。

圖8 階躍速度指令下的響應(yīng)曲線
圖9 斜坡速度指令下的響應(yīng)曲線[/ALIGN]
單片集成、混合集成和系統(tǒng)集成可看成是電力電子集成的不同層次和形式,現(xiàn)階段單片集成局限于小功率范圍;中功率領(lǐng)域多采用混合集成或混合集成與系統(tǒng)集成相結(jié)合的形式;大功率領(lǐng)域仍以系統(tǒng)集成為主。單片集成和混合集成由于具有更高的集成度和更好的性能,因此是未來(lái)集成技術(shù)的主要發(fā)展方向[9]。
本文所設(shè)計(jì)的基于FPGA的異步電機(jī)變頻調(diào)速專用IC,內(nèi)部集成了Clarke變換、Park 變換、Park逆變換、速度PI調(diào)節(jié)、電流d軸PI調(diào)節(jié)、電流q軸PI調(diào)節(jié)、對(duì)轉(zhuǎn)子磁鏈定位和速度檢測(cè)、電壓空間矢量脈寬調(diào)制及PWM波形發(fā)生等算法,速度外環(huán)和電流內(nèi)環(huán)的采樣頻率分別可以達(dá)到35kHz和20kHz。實(shí)驗(yàn)結(jié)果表明,該專用控制器在運(yùn)行時(shí)有著良好的動(dòng)、靜態(tài)性能。該專用IC已經(jīng)在高性能集成數(shù)控系統(tǒng)中獲得應(yīng)用,并取得了很好的實(shí)踐效果,對(duì)研制具有自主知識(shí)產(chǎn)權(quán)的矢量控制異步電機(jī)變頻調(diào)速專用芯片有著十分重要的參考價(jià)值。標(biāo)簽:
傳動(dòng)網(wǎng)版權(quán)與免責(zé)聲明:凡本網(wǎng)注明[來(lái)源:傳動(dòng)網(wǎng)]的所有文字、圖片、音視和視頻文件,版權(quán)均為傳動(dòng)網(wǎng)(www.wangxinlc.cn)獨(dú)家所有。如需轉(zhuǎn)載請(qǐng)與0755-82949061聯(lián)系。任何媒體、網(wǎng)站或個(gè)人轉(zhuǎn)載使用時(shí)須注明來(lái)源“傳動(dòng)網(wǎng)”,違反者本網(wǎng)將追究其法律責(zé)任。
本網(wǎng)轉(zhuǎn)載并注明其他來(lái)源的稿件,均來(lái)自互聯(lián)網(wǎng)或業(yè)內(nèi)投稿人士,版權(quán)屬于原版權(quán)人。轉(zhuǎn)載請(qǐng)保留稿件來(lái)源及作者,禁止擅自篡改,違者自負(fù)版權(quán)法律責(zé)任。
產(chǎn)品新聞
更多>2025-10-31
勇梅機(jī)械液壓閘門給煤機(jī)的優(yōu)點(diǎn)
2025-10-22
2025-10-17
2025-10-11
「一體機(jī)性價(jià)比王者」NK290M普及型數(shù)控...
2025-10-09
耐磨管道機(jī)器人檢測(cè)電纜CCTV,水下管道...
2025-09-23