技術(shù)頻道

娓娓工業(yè)
您現(xiàn)在的位置: 中國傳動網(wǎng) > 技術(shù)頻道 > 技術(shù)百科 > 基于Nios II的機(jī)器人視覺伺服控制器的研究與設(shè)計

基于Nios II的機(jī)器人視覺伺服控制器的研究與設(shè)計

時間:2008-09-05 15:53:00來源:fenghy

導(dǎo)語:?Altera公司的Nios II處理器是可編程邏輯器件的軟核處理器。
引言 Altera公司的Nios II處理器是可編程邏輯器件的軟核處理器。NiosII軟核處理器和存儲器、I/O接口等外設(shè)可嵌入到FPGA中,組成一個可編程單芯片系統(tǒng)(SOPC),大大降低了系統(tǒng)的成本、體積和功耗。適合網(wǎng)絡(luò)、電信、數(shù)據(jù)通信、嵌入式和消費市場等各種嵌入式應(yīng)用場合。 本文提出一個基于Nios II處理器結(jié)構(gòu)的系統(tǒng)用于實現(xiàn)機(jī)器人實時運動檢測跟蹤,使用線性卡爾曼濾波器算法來快速完成運動估計及進(jìn)一步分析和校正,算法中的乘除利用MATLAB/DSP Builder生成的模塊作為Nios II處理器的自定義指令的設(shè)計方法。 機(jī)器人視覺伺服控制器的研究與設(shè)計 機(jī)器人視覺伺服控制就是用各種成像系統(tǒng)代替視覺器官作為輸入的敏感手段,并由高速處理器替代大腦完成相應(yīng)的處理和解釋,其最終研究目標(biāo)就是使機(jī)器人視覺伺服控制器能像人那樣通過視覺觀察和理解世界,具有自主適應(yīng)環(huán)境的能力,可依據(jù)視覺敏感和反饋,以某種程度的智能完成一定的任務(wù)。 系統(tǒng)硬件實現(xiàn) 基于SOPC的機(jī)器人視覺伺服控制器,主要由FPGA、存儲器和外設(shè)三個部分,如圖1所示。
攝像頭位置固定,它所能采集圖像的范圍稱為視覺區(qū)域,調(diào)整攝像機(jī)使視覺區(qū)域覆蓋機(jī)器人的工作空間,即機(jī)器人要跟蹤的曲線在該視覺區(qū)域內(nèi)。利用攝像機(jī)采集圖像,而后系統(tǒng)對采集的圖像進(jìn)行處理,分析、提取出離散的采樣點序列,最后再根據(jù)采樣點序列規(guī)劃機(jī)器人的運動路徑。其中,F(xiàn)PGA部分核心是Nios II處理器Core。在一般的嵌入式系統(tǒng)開發(fā)中,當(dāng)需要新的外設(shè)模塊時往往需要在PCB上加入相應(yīng)的外設(shè)芯片或者換用更高檔的CPU,而SOPC設(shè)計可以同一個FPGA芯片內(nèi)加入相應(yīng)的外設(shè)模塊核,并通過在片上的Avalon總線與NiosⅡ處理器Core相連,因而不需要在PCB這個層面上作更多的修改。成像采集裝置從目標(biāo)對象場景中采集圖像序列,保存在SOPC的片外存儲器中,然后利用NiosⅡ處理器和定制的乘法、除法等DSP運算指令來實現(xiàn)線形卡爾曼濾波器的算法,從而實現(xiàn)運動目標(biāo)的識別與跟蹤。 系統(tǒng)軟件的實現(xiàn) 離散線性卡爾曼濾波算法 線性卡爾曼濾波是美國工程師Kalman在線性最小方差估計的基礎(chǔ)上,提出的數(shù)學(xué)結(jié)構(gòu)上比較簡單的最優(yōu)線性遞推濾波方法,具有計算量、存儲量低,實時性高的優(yōu)點。特別是經(jīng)歷了初始濾波的過渡狀態(tài)后,濾波效果非常好。 線性卡爾曼濾波基本算法如下:設(shè)一隨機(jī)動態(tài)系統(tǒng),其數(shù)學(xué)模型為:
公式1中x(k)為系統(tǒng)狀態(tài)矢量,w(k)為系統(tǒng)噪音矢量,φ(k),Г(k)為系統(tǒng)矩陣,公式2中Z(k)為系統(tǒng)觀測矢量,H(k)為系統(tǒng)觀測矩陣,V(k)為系統(tǒng)觀測噪音矩陣。 關(guān)于系統(tǒng)的隨機(jī)性,本文假定,系統(tǒng)噪音和觀測噪音是不相關(guān)的零均值高斯白噪聲。隨機(jī)系統(tǒng)的狀態(tài)估計問題,就是根據(jù)選定的估計準(zhǔn)則和獲取的測量信息對系統(tǒng)狀態(tài)進(jìn)行估計,卡爾曼濾波的估計準(zhǔn)則是:
其中,即估計是x(k)無偏和最小方差,根據(jù)這兩個準(zhǔn)則可推導(dǎo)出對系統(tǒng)的完整的濾波算法,即: 預(yù)測誤差方程為: 增益矩陣方程為: 濾波誤差方差陣為: 上述公式中I是單位矩陣,Q為w(k)自協(xié)方差方差陣,R為V(k)自協(xié)方差方差陣。卡爾曼濾波采用遞推算法,計算最優(yōu)濾波值時,K(k+1)由P(k+1|k)來確定,P(k+1|k)由P(k)來確定,P(k+1)由P(k+1|k)和K(k+1)來確定,如此反復(fù)遞推運算。 系統(tǒng)程序流程   本系統(tǒng)的主要功能是完成運動目標(biāo)的鎖定,并控制運動平臺對目標(biāo)進(jìn)行實時跟蹤。使用高性能NiosII處理器作為控制器控制著整個系統(tǒng)的實現(xiàn)流程和高效的線性卡爾曼濾波算法對目標(biāo)運動參數(shù)的估計,有效地提高了圖像處理速度,實現(xiàn)了運動目標(biāo)的快速跟蹤。以下是系統(tǒng)流程: 1.系統(tǒng)初始化:由SOPC通過控制總線設(shè)置USB接口微型攝像頭工作模式,并初始化其主控程序變量。 2.確定運動區(qū)域:由Nios II處理器根據(jù)圖像序列鎖定運動物體,根據(jù)被跟蹤物體確定運動跟蹤區(qū)間,接下來的跟蹤操作都是在這個跟蹤窗口中進(jìn)行。 3.預(yù)測計算:利用線形卡爾曼濾波器方程進(jìn)行計算。 4.濾波:預(yù)測和濾波是相互作用的,即由濾波得到預(yù)測而由預(yù)測又可得到濾波。 5.輸出:SOPC發(fā)出控制信號給隨動平臺。   該系統(tǒng)采用集成了Nios軟核處理器的Stratix高密度FPGA,控制器通過攝像頭記錄每一時刻運動目標(biāo)的位置和速度作為觀測值。然后按照公式(3)、(4)、(5)、(6)進(jìn)行最佳狀態(tài)估計,得到每一時刻運動目標(biāo)的位置和速度的預(yù)測值。由于各種干擾因素的存在,經(jīng)過七八個時間段后預(yù)測位置與觀測位置相當(dāng)接近,即可實現(xiàn)準(zhǔn)確的狀態(tài)預(yù)測。 結(jié)語   本文建立了一套基于SOPC結(jié)構(gòu)的多關(guān)節(jié)機(jī)器人視覺伺服系統(tǒng),主要應(yīng)用線性卡爾曼濾波算法成功的預(yù)測了運動目標(biāo)的狀態(tài)參數(shù)功能是鎖定運動目標(biāo),實現(xiàn)對目標(biāo)進(jìn)行實時跟蹤。由于應(yīng)用卡爾曼濾波后極大地縮小了搜索空間,減少了系統(tǒng)的圖像處理時間,可以有效地提高系統(tǒng)的實時性,實現(xiàn)對運動目標(biāo)的快速跟蹤。

標(biāo)簽:

點贊

分享到:

上一篇:計算機(jī)控制的多閥門檢驗系統(tǒng)

下一篇:微能WIN-V63矢量控制變頻器在...

中國傳動網(wǎng)版權(quán)與免責(zé)聲明:凡本網(wǎng)注明[來源:中國傳動網(wǎng)]的所有文字、圖片、音視和視頻文件,版權(quán)均為中國傳動網(wǎng)(www.wangxinlc.cn)獨家所有。如需轉(zhuǎn)載請與0755-82949061聯(lián)系。任何媒體、網(wǎng)站或個人轉(zhuǎn)載使用時須注明來源“中國傳動網(wǎng)”,違反者本網(wǎng)將追究其法律責(zé)任。

本網(wǎng)轉(zhuǎn)載并注明其他來源的稿件,均來自互聯(lián)網(wǎng)或業(yè)內(nèi)投稿人士,版權(quán)屬于原版權(quán)人。轉(zhuǎn)載請保留稿件來源及作者,禁止擅自篡改,違者自負(fù)版權(quán)法律責(zé)任。

網(wǎng)站簡介|會員服務(wù)|聯(lián)系方式|幫助信息|版權(quán)信息|網(wǎng)站地圖|友情鏈接|法律支持|意見反饋|sitemap

傳動網(wǎng)-工業(yè)自動化與智能制造的全媒體“互聯(lián)網(wǎng)+”創(chuàng)新服務(wù)平臺

網(wǎng)站客服服務(wù)咨詢采購咨詢媒體合作

Chuandong.com Copyright ?2005 - 2025 ,All Rights Reserved 深圳市奧美大唐廣告有限公司 版權(quán)所有
粵ICP備 14004826號 | 營業(yè)執(zhí)照證書 | 不良信息舉報中心 | 粵公網(wǎng)安備 44030402000946號