機器視覺在工業(yè)檢測中的應用現(xiàn)狀
機器視覺在工業(yè)上應用領域廣闊,核心功能包括:測量、檢測、識別、定位等。產(chǎn)業(yè)鏈可以分為上游部件級市場、中游系統(tǒng)集成/整機裝備市場和下游應用市場。機器視覺上游有光源、鏡頭、工業(yè)相機、圖像采集卡、圖像處理軟件等軟硬件提供商,中游有集成和整機設備提供商。行業(yè)下游應用較廣,主要下游市場包括電子制造行業(yè)、汽車、印刷包裝、煙草、農(nóng)業(yè)、醫(yī)藥、紡織和交通等領域。
機器視覺中,缺陷檢測功能,是機器視覺應用得最多的功能之一,主要檢測產(chǎn)品表面的各種信息。在現(xiàn)代工業(yè)自動化生產(chǎn)中,連續(xù)大批量生產(chǎn)中每個制程都有一定的次品率,單獨看雖然比率很小,但相乘后卻成為企業(yè)難以提高良率的瓶頸,并且在經(jīng)過完整制程后再剔除次品成本會高很多。因此及時檢測及次品剔除對質(zhì)量控制和成本控制是非常重要的,也是制造業(yè)進一步升級的重要基石。
機器視覺難點
1)光源與成像:機器視覺中優(yōu)質(zhì)的成像是第一步,由于不同材料物體表面反光、折射等問題都會影響被測物體特征的提取,因此光源與成像可以說是機器視覺檢測要攻克的第一個難關。比如現(xiàn)在玻璃、反光表面的劃痕檢測等,很多時候問題都卡在不同缺陷的集成成像上。
2)重噪音中低對比度圖像中的特征提取:在重噪音環(huán)境下,真假瑕疵的鑒別很多時候較難,這也是很多場景始終存在一定誤檢率的原因,但這塊通過成像和邊緣特征提取的快速發(fā)展,已經(jīng)在不斷取得各種突破。
3)對非預期缺陷的識別:在應用中,往往是給定一些具體的缺陷模式,使用機器視覺來識別它們到底有沒有發(fā)生。但經(jīng)常遇到的情況是,許多明顯的缺陷,因為之前沒有發(fā)生過,或者發(fā)生的模式過分多樣,而被漏檢。如果換做是人,雖然在操作流程文件中沒讓它去檢測這個缺陷,但是他它注意到,從而有較大幾率抓住,而機器視覺在這點上的“智慧”目前還較難突破。
文章轉載自新機器視覺微信公眾號,如有問題,請及時聯(lián)系刪除