人工智能芯片競(jìng)賽已經(jīng)開(kāi)始 新型芯片領(lǐng)域應(yīng)如何發(fā)展?

時(shí)間:2018-07-25

來(lái)源:網(wǎng)絡(luò)轉(zhuǎn)載

導(dǎo)語(yǔ):多年以來(lái),半導(dǎo)體世界似乎陷入了一種穩(wěn)定的平衡:除了IBM的POWER系列之外,英特爾在服務(wù)器領(lǐng)域擊敗了幾乎所有RISC處理器。而在其他領(lǐng)域,英偉達(dá)(Nvidia)是GPU領(lǐng)域的后起之秀,淘汰了大部分競(jìng)爭(zhēng)對(duì)手,只剩下ATI(現(xiàn)屬于AMD),但ATI擁有的市場(chǎng)份額僅為英偉達(dá)之前所占市場(chǎng)份額的一半。

【人工智能芯片競(jìng)賽已經(jīng)開(kāi)始  新型芯片領(lǐng)域應(yīng)如何發(fā)展?】多年以來(lái),半導(dǎo)體世界似乎陷入了一種穩(wěn)定的平衡:除了IBM的POWER系列之外,英特爾在服務(wù)器領(lǐng)域擊敗了幾乎所有RISC處理器。而在其他領(lǐng)域,英偉達(dá)(Nvidia)是GPU領(lǐng)域的后起之秀,淘汰了大部分競(jìng)爭(zhēng)對(duì)手,只剩下ATI(現(xiàn)屬于AMD),但ATI擁有的市場(chǎng)份額僅為英偉達(dá)之前所占市場(chǎng)份額的一半。在較新的移動(dòng)端,這個(gè)近乎壟斷的故事似乎重演了一遍:ARM統(tǒng)治了整個(gè)世界。盡管英特爾在Atom處理器上進(jìn)行了大量嘗試,但卻屢戰(zhàn)屢敗,并最終在2015年選擇放棄。

隨后風(fēng)水輪流轉(zhuǎn),一切又都發(fā)生了變化。AMD重新成為有力的x86競(jìng)爭(zhēng)對(duì)手;適用于大數(shù)據(jù)等專門(mén)任務(wù)的現(xiàn)場(chǎng)可編程門(mén)陣列(FieldGateProgrammableArray,F(xiàn)PGA)處理器的出現(xiàn)創(chuàng)造了新的利基市場(chǎng)。但實(shí)際上,芯片產(chǎn)業(yè)的巨大轉(zhuǎn)變是伴隨著人工智能(AI)和機(jī)器學(xué)習(xí)(ML)技術(shù)的出現(xiàn)而來(lái)的。隨著這些新興技術(shù)的出現(xiàn),涌現(xiàn)了大量新型處理器,并且這些新型處理器來(lái)自人們之前想不到的來(lái)源。

英特爾于2016年通過(guò)收購(gòu)初創(chuàng)企業(yè)NervanaSystems進(jìn)入這一市場(chǎng),其隨后收購(gòu)了第二家公司Movidius用于開(kāi)發(fā)處理圖像的人工智能。

微軟正在為其虛擬現(xiàn)實(shí)/增強(qiáng)現(xiàn)實(shí)頭戴設(shè)備HoloLens研發(fā)人工智能芯片,并且該芯片有望在其他設(shè)備上應(yīng)用。

谷歌有一個(gè)用于神經(jīng)網(wǎng)絡(luò)的特殊人工智能芯片,名為張量處理器(TensorProcessingUnit,TPU),可用于Google云端平臺(tái)上的人工智能應(yīng)用程序。

據(jù)報(bào)道,亞馬遜正在為其Alexa家庭助理開(kāi)發(fā)人工智能芯片。

蘋(píng)果正在開(kāi)發(fā)一款名為神經(jīng)引擎(NeuralEngine)的人工智能處理器,該處理器可為Siri和FaceID提供支持。

ARM公司最近推出了兩款新處理器,即ARM機(jī)器學(xué)習(xí)(ML)處理器和ARM物體檢測(cè)(OD)處理器。兩款處理器都專注于圖像識(shí)別。

IBM正在開(kāi)發(fā)專門(mén)的人工智能處理器,該公司還從英偉達(dá)獲得了NVLink的許可,以便提供專門(mén)用于人工智能和機(jī)器學(xué)習(xí)技術(shù)的高速數(shù)據(jù)吞吐量。

即使是像特斯拉這樣的非傳統(tǒng)科技公司也希望進(jìn)入這一領(lǐng)域,其首席執(zhí)行官埃隆·馬斯克(ElonMusk)于2017年承認(rèn),前AMD和蘋(píng)果公司芯片工程師吉姆·凱勒(JimKeller)將為這家汽車公司構(gòu)建硬件。

這一宏觀觀察還沒(méi)有將初創(chuàng)企業(yè)考慮在內(nèi)?!都~約時(shí)報(bào)》表示,據(jù)不完全統(tǒng)計(jì),專注于人工智能的芯片初創(chuàng)企業(yè)(而不是單純的軟件公司或芯片公司)已達(dá)到45家,并且這一數(shù)字還在繼續(xù)增長(zhǎng)。

那么,在芯片制造業(yè)的發(fā)展停滯多年后,為什么硬件會(huì)突然出現(xiàn)爆發(fā)式增長(zhǎng)呢?畢竟,人們普遍認(rèn)為英偉達(dá)的GPU非常適合人工智能且其已被廣泛使用。為什么我們現(xiàn)在需要更多的芯片,并且還是那么多不同的芯片呢?

答案有點(diǎn)復(fù)雜,就像人工智能本身。

(1)以資金、使用場(chǎng)景和效率為導(dǎo)向

雖然x86目前仍然是用于計(jì)算機(jī)信息處理的主導(dǎo)芯片架構(gòu),但它對(duì)于像人工智能這樣的高度專業(yè)化任務(wù)來(lái)說(shuō)還是太普通了,Intersect360Research(位于美國(guó)的咨詢與服務(wù)公司,其業(yè)務(wù)涵蓋高性能計(jì)算和人工智能問(wèn)題)的首席執(zhí)行官艾迪生·斯內(nèi)爾(AddisonSnell)表示。

“x86是以通用服務(wù)器平臺(tái)為目標(biāo)構(gòu)建的。因此,它必須什么都很擅長(zhǎng),”他說(shuō)道?!岸鴮?duì)于其他芯片,各家公司構(gòu)建的是專門(mén)針對(duì)一個(gè)應(yīng)用程序的架構(gòu),無(wú)需將基礎(chǔ)架構(gòu)的其他部分考慮在內(nèi)。因此,可將操作系統(tǒng)和基礎(chǔ)架構(gòu)的運(yùn)行任務(wù)留給x86主機(jī),同時(shí)將其他任務(wù)分包給各種協(xié)同處理器和加速器。”

處理人工智能的實(shí)際任務(wù)是與標(biāo)準(zhǔn)計(jì)算或GPU處理完全不同的流程,因此,需要專門(mén)的芯片來(lái)完成這一任務(wù)。x86CPU可以完成人工智能任務(wù),但對(duì)于實(shí)際只需三個(gè)步驟即可完成的任務(wù),它會(huì)執(zhí)行十二個(gè)步驟來(lái)完成;GPU在某些情況下還可能會(huì)被大材小用。

一般而言,科學(xué)計(jì)算是以確定的方式進(jìn)行的。例如,如果您想知道2加3等于5并計(jì)算所有小數(shù)位,那么x86和GPU就可以做得很好。但人工智能的本質(zhì)是,在沒(méi)有實(shí)際運(yùn)行計(jì)算的情況下,表示幾乎在所有情況下都能觀察到2.5加3.5等于6。對(duì)于當(dāng)今的人工智能而言,重要的是從數(shù)據(jù)中識(shí)別模式,而不是確定性計(jì)算。

簡(jiǎn)而言之,界定人工智能和機(jī)器學(xué)習(xí)的是它們從過(guò)去的經(jīng)驗(yàn)中學(xué)習(xí)并加以改進(jìn)的能力。著名的阿爾法狗(AlphaGo)就是通過(guò)模擬大量圍棋比賽來(lái)提高自己的棋藝的。另一個(gè)大家都熟悉的例子是Facebook的面部識(shí)別人工智能,經(jīng)過(guò)多年的訓(xùn)練,它已經(jīng)能夠準(zhǔn)確地標(biāo)記用戶的照片。

人工智能一旦學(xué)會(huì),就不再需要重新學(xué)習(xí)。這是機(jī)器學(xué)習(xí)的標(biāo)志,也是人工智能更廣泛定義的一部分。究其本質(zhì),機(jī)器學(xué)習(xí)是一種使用算法解析數(shù)據(jù)、從中進(jìn)行學(xué)習(xí),然后根據(jù)這些數(shù)據(jù)作出判斷或預(yù)測(cè)的實(shí)踐。這是一種模式識(shí)別機(jī)制,例如,機(jī)器學(xué)習(xí)軟件會(huì)記住2加3等于5,讓整個(gè)人工智能系統(tǒng)都得以使用這一信息。

另一個(gè)示例是用于無(wú)人駕駛汽車的人工智能。它不會(huì)通過(guò)確定的事物來(lái)判斷所處環(huán)境中其他物體的活動(dòng)路徑,而只是利用過(guò)往的經(jīng)驗(yàn),表示曾經(jīng)有一輛車在此處這樣行駛,而且當(dāng)我在其他所有時(shí)間觀察到這樣一輛車時(shí),它都是這樣行駛的。因此,系統(tǒng)可以預(yù)期特定類型的行動(dòng)。

這種預(yù)測(cè)性問(wèn)題解決方法的結(jié)果是,人工智能計(jì)算可以通過(guò)單精度計(jì)算完成。因此,雖然CPU和GPU能夠很好地完成此類計(jì)算,但它們對(duì)于這項(xiàng)任務(wù)而言實(shí)際上是殺雞焉用牛刀的存在。單精度芯片就可以完成這個(gè)任務(wù),并且能夠以低得多的功耗完成。

毫無(wú)疑問(wèn),功耗和尺寸對(duì)于芯片而言很重要,尤其是對(duì)于人工智能而言,因?yàn)閱我怀叽绮⒉荒苓m用于這個(gè)領(lǐng)域的所有情況。人工智能包含機(jī)器學(xué)習(xí),而機(jī)器學(xué)習(xí)則包含深度學(xué)習(xí),并且所有這些技術(shù)都可通過(guò)不同的設(shè)置針對(duì)不同的任務(wù)進(jìn)行部署?!安⒎敲總€(gè)人工智能芯片都是一樣的,”英特爾子公司Movidius的營(yíng)銷總監(jiān)加里·布朗(GaryBrown)說(shuō)道。Movidius專門(mén)針對(duì)深度學(xué)習(xí)流程制作了定制芯片,因?yàn)樗婕暗牟襟E在CPU方面受到高度限制?!懊總€(gè)芯片可以在不同的時(shí)候處理不同的智能信息。我們的芯片是視覺(jué)智能,因此算法使用攝像頭輸入內(nèi)容進(jìn)行學(xué)習(xí),得出所見(jiàn)內(nèi)容代表的意義。”

布朗表示,甚至需要并且有必要在網(wǎng)絡(luò)邊緣以及數(shù)據(jù)中心進(jìn)行區(qū)分,身處這一領(lǐng)域的公司已經(jīng)察覺(jué)自己需要在這些不同的位置使用不同的芯片。

“邊緣芯片不會(huì)與數(shù)據(jù)中心芯片競(jìng)爭(zhēng),”他說(shuō)道?!跋馲eon至強(qiáng)這樣的數(shù)據(jù)中心芯片必須具備針對(duì)這類人工智能的高性能功能,但對(duì)于智能手機(jī)中使用的人工智能則沒(méi)有這樣的要求。智能手機(jī)中的人工智能必須將功耗保持在1瓦以下。所以問(wèn)題在于,‘原生處理器的哪方面不夠好以至于用戶需要輔助芯片?’”

畢竟,如果想在智能手機(jī)或增強(qiáng)現(xiàn)實(shí)頭戴設(shè)備中使用人工智能,那么功耗會(huì)是個(gè)問(wèn)題。英偉達(dá)的Volta處理器是人工智能處理領(lǐng)域的佼佼者,但其功耗高達(dá)300瓦。用戶是不會(huì)想要在智能手機(jī)中硬塞進(jìn)去這么一個(gè)處理器的。

肖恩·斯特森(SeanStetson)是工業(yè)無(wú)人駕駛車輛制造商Seegrid的技術(shù)研發(fā)總監(jiān),他也認(rèn)為人工智能和機(jī)器學(xué)習(xí)技術(shù)的發(fā)展到目前為止一直被普通處理器拖累?!盀榱俗屓魏嗡惴ǘ寄苓\(yùn)行,無(wú)論是機(jī)器學(xué)習(xí)、圖像處理還是圖形處理,都有非常具體的工作流程,”他說(shuō)道。“如果您沒(méi)有針對(duì)這些模式進(jìn)行設(shè)置的計(jì)算核心,那么您會(huì)執(zhí)行大量無(wú)意義的數(shù)據(jù)加載和傳輸操作。而當(dāng)您移動(dòng)數(shù)據(jù)時(shí),就是您效率最低下的時(shí)候,此時(shí)會(huì)產(chǎn)生大量信號(hào)傳輸功耗和瞬態(tài)功耗。處理器的效率是根據(jù)每條指令消耗的能量進(jìn)行衡量的?!?/p>

當(dāng)然,對(duì)更高的專業(yè)化程度和能源效率的追求并不是這些新型人工智能芯片存在的全部原因。IBM研究員兼IBMPower系統(tǒng)開(kāi)發(fā)副總裁布拉德·麥克雷迪(BradMcCredie)表示,大家一窩蜂加入進(jìn)來(lái)的更大原因在于回報(bào)十分豐厚,“整個(gè)轉(zhuǎn)折點(diǎn)就在于大家預(yù)期會(huì)有大量新資金注入IT行業(yè),而且這些新資金全都與人工智能有關(guān),這導(dǎo)致大量風(fēng)險(xiǎn)資本涌入人工智能領(lǐng)域。毫無(wú)疑問(wèn),人們看到了淘金潮?!?/p>

(2)全新的生態(tài)系統(tǒng)

專注于人工智能的芯片并不是憑空設(shè)計(jì)出來(lái)的。伴隨它們而來(lái)的是應(yīng)對(duì)人工智能和機(jī)器學(xué)習(xí)處理的高度并行特質(zhì)的新吞吐方法。如果您構(gòu)建人工智能協(xié)同處理器,但使用標(biāo)準(zhǔn)計(jì)算機(jī)甚或服務(wù)器的過(guò)時(shí)技術(shù),那就會(huì)像是將法拉利引擎放入大眾甲殼蟲(chóng)汽車一樣。

“當(dāng)人們談?wù)撊斯ぶ悄芎陀糜谌斯ぶ悄艿男酒瑫r(shí),需要注意的是構(gòu)建人工智能解決方案需要相當(dāng)多的非人工智能技術(shù),”英特爾人工智能產(chǎn)品事業(yè)部副總裁兼首席技術(shù)官及Nervana聯(lián)合創(chuàng)始人阿米爾·霍斯勞沙希(AmirKhosrowshahi)說(shuō)道:“它涉及CPU、內(nèi)存、SSD和互連。讓所有這些因素都發(fā)揮作用非常關(guān)鍵?!崩纾琁BM在針對(duì)任務(wù)關(guān)鍵型系統(tǒng)設(shè)計(jì)其Power9處理器時(shí)使用了英偉達(dá)的高速NVLink(用于核心互連)、第四代PCIExpress及其自己的接口OpenCAPI(CoherentAcceleratorProcessorInterface,一致性加速處理器接口)。OpenCAPI是一種新的連接類型,它為內(nèi)存、加速器、網(wǎng)絡(luò)、存儲(chǔ)和其他芯片提供高帶寬、低延遲的連接。

麥克雷迪表示,x86生態(tài)系統(tǒng)并沒(méi)有跟上節(jié)奏。他指出了第三代PCIExpress已經(jīng)上市七年但卻沒(méi)有進(jìn)行過(guò)重大更新這一事實(shí)(第一次更新還是最近才發(fā)布的),而IBM是最先采用該接口的公司之一。x86服務(wù)器仍然配備的是第三代PCIe,其帶寬僅為第四代PCIe的一半。“計(jì)算功能的這一爆炸式增長(zhǎng)將需要數(shù)量級(jí)的計(jì)算能力提升,”他說(shuō)道。“我們需要處理器完成其力所能及的一切任務(wù),然后在此基礎(chǔ)上完成更多任務(wù)。該行業(yè)終于開(kāi)始關(guān)注內(nèi)存帶寬和I/O帶寬性能。這些方面正在成為系統(tǒng)性能受到的第一級(jí)約束。我認(rèn)為加速器的規(guī)模將會(huì)出現(xiàn)增長(zhǎng),將會(huì)有更多的工作負(fù)載需要更多的加速。我們甚至?xí)剡^(guò)頭去加速數(shù)據(jù)庫(kù)和ERP(企業(yè)資源規(guī)劃)等常見(jiàn)工作負(fù)載。我認(rèn)為,我們正在見(jiàn)證這個(gè)行業(yè)穩(wěn)步轉(zhuǎn)變的開(kāi)端,我們將更加注重加速,并且市場(chǎng)上的加速產(chǎn)品會(huì)變得更多?!?/p>

但只靠硬件并不能完成機(jī)器學(xué)習(xí)中的學(xué)習(xí)部分,軟件的作用舉足輕重。在這一新型芯片淘金熱浪潮中,幾乎沒(méi)有人提及與之相伴的軟件。幸運(yùn)的是,這是因?yàn)檐浖诤艽蟪潭壬弦呀?jīng)做好準(zhǔn)備,它正在等待芯片迎頭趕上,金融分析和人工智能開(kāi)發(fā)公司OTASTechnologies的首席執(zhí)行官湯姆·多里斯(TomDoris)如此表示。“我認(rèn)為,如果您看一下更加久遠(yuǎn)的歷史,就會(huì)發(fā)現(xiàn)所有發(fā)展都是靠硬件驅(qū)動(dòng)的,”他說(shuō)道?!八惴ú](méi)有出現(xiàn)太大的變化。發(fā)展都是靠硬件領(lǐng)域的進(jìn)步推動(dòng)的。這對(duì)于離開(kāi)這一領(lǐng)域多年的我來(lái)說(shuō)是一個(gè)驚喜。自二十世紀(jì)九十年代末以來(lái),軟件和算法并沒(méi)有太多變化,基本上都是計(jì)算能力在變。”

彭博(Bloomberg)首席技術(shù)官辦公室的數(shù)據(jù)科學(xué)家戴維·羅森堡(DavidRosenberg)也認(rèn)為軟件的發(fā)展?fàn)顩r良好?!坝行╊I(lǐng)域的軟件發(fā)展還有很長(zhǎng)的路要走,這與分布式計(jì)算相關(guān),與分布式神經(jīng)計(jì)算科學(xué)相關(guān),”他說(shuō)道?!暗珜?duì)于我們已經(jīng)知道該怎么做的事情,軟件已經(jīng)得到了很好的改進(jìn)?,F(xiàn)在的問(wèn)題是硬件是否能夠足夠快速、高效地執(zhí)行軟件。”

事實(shí)上,在目前的一些使用場(chǎng)景中,硬件和軟件是并行開(kāi)發(fā)的,目的在于支持這一人工智能芯片和使用場(chǎng)景的新浪潮。英偉達(dá)人工智能工作負(fù)責(zé)人伊恩·巴克(IanBuck)指出,在英偉達(dá),軟件和硬件團(tuán)隊(duì)的規(guī)模大致相當(dāng)。巴克開(kāi)發(fā)了CUDA編程語(yǔ)言,借助CUDA,開(kāi)發(fā)人員能夠?qū)?yīng)用程序編寫(xiě)為使用英偉達(dá)的GPU進(jìn)行并行處理,而不使用CPU。他表示:“我們?cè)趨f(xié)同開(kāi)發(fā)針對(duì)系統(tǒng)軟件、庫(kù)、人工智能框架和編譯器的新架構(gòu),這些全都是為了利用不斷涌現(xiàn)的新方法和神經(jīng)網(wǎng)絡(luò)。在人工智能領(lǐng)域取得成功的唯一途徑不僅僅是構(gòu)建出色的芯片,同時(shí)還需要在整個(gè)軟件堆棧中進(jìn)行緊密集成,以實(shí)施和優(yōu)化這些不斷被發(fā)明出來(lái)的新網(wǎng)絡(luò)?!?/p>

因此,對(duì)于巴克而言,人工智能代表新計(jì)算類型的原因之一在于,他認(rèn)為人工智能確實(shí)構(gòu)成了硬件和軟件之間的一種新型關(guān)系?!拔覀儾恍枰紤]向后兼容性,我們正在重新發(fā)明擅長(zhǎng)處理此類任務(wù)的處理器,并同時(shí)開(kāi)發(fā)在這些處理器上運(yùn)行的軟件。”

(3)這場(chǎng)芯片競(jìng)賽的未來(lái)

盡管目前有很多家潛在的人工智能芯片開(kāi)發(fā)公司,但圍繞所有這些舉措提出的最大問(wèn)題之一是,有多少芯片將會(huì)推向市場(chǎng)、有多少芯片將會(huì)專屬于供應(yīng)商以及有多少芯片將被徹底淘汰。如今的大部分人工智能芯片仍然只是幻影。

至于那些設(shè)計(jì)人工智能芯片的非CPU制造商(例如谷歌、Facebook和微軟),您會(huì)發(fā)現(xiàn)這些公司似乎都在制作供自己使用的定制芯片,并且很可能永遠(yuǎn)不會(huì)將這些芯片推向市場(chǎng)。此類公司可以將數(shù)十億美元的收入投入定制芯片的研發(fā),且無(wú)需立即得到明確的投資回報(bào)。因此,雖然用戶可以通過(guò)Google云端平臺(tái)服務(wù)使用谷歌的張量處理單元,但谷歌卻不會(huì)直接銷售該芯片。這也是Facebook和微軟期望實(shí)現(xiàn)的模式。

其他芯片則肯定會(huì)進(jìn)入市場(chǎng)。英偉達(dá)最近宣布推出三款面向人工智能的芯片:專為智能機(jī)器人設(shè)計(jì)的JetsonXavier片上系統(tǒng);專為自動(dòng)駕駛出租車設(shè)計(jì)的DrivePegasus;以及專為半自動(dòng)駕駛汽車設(shè)計(jì)的DriveXavier。為所有這些芯片提供動(dòng)力的是IsaacSim模擬環(huán)境,開(kāi)發(fā)人員可將該環(huán)境用于訓(xùn)練機(jī)器人及使用JetsonXavier進(jìn)行測(cè)試。

與此同時(shí),英特爾承諾其首款基于Nervana(英特爾于2016年收購(gòu))技術(shù)的機(jī)器學(xué)習(xí)處理器將在2019年以SpringCrest的代號(hào)進(jìn)入市場(chǎng)。該公司目前還有一款名為L(zhǎng)akeCrest的Nervana芯片,可供開(kāi)發(fā)人員作涉足人工智能領(lǐng)域之用。英特爾表示,SpringCrest的性能最終將達(dá)到LakeCrest性能的三倍到四倍。

所有參與者都能存活下來(lái)嗎?“我認(rèn)為在未來(lái),我們將看到人工智能自我顯現(xiàn)的演變過(guò)程,”Movidius的布朗表示?!叭绻胍獙⑵溆糜跀?shù)據(jù)中心,那么您需要提供數(shù)據(jù)中心芯片。如果您想要將其用于頭戴式設(shè)備,那么您也需要為其找到合適的芯片。這將是人工智能芯片的發(fā)展趨勢(shì),我們可能會(huì)看到擁有不同功能的不同芯片,并且這些功能可能會(huì)合并到CPU中。我們還可能會(huì)看到具有多個(gè)功能的芯片?!?/p>

如果一切都有點(diǎn)似曾相識(shí),那么現(xiàn)實(shí)可能就是這樣的。人工智能芯片的發(fā)展在某些方面可能與過(guò)去的芯片演變過(guò)程相似:一切從高度專業(yè)化和眾多競(jìng)爭(zhēng)對(duì)手開(kāi)始,但最終一些產(chǎn)品會(huì)越來(lái)越受歡迎,且少數(shù)市場(chǎng)領(lǐng)導(dǎo)者會(huì)提供多種功能。三十年前,80386是首屈一指的桌面芯片,如果您要在Lotus1-2-3中進(jìn)行大量計(jì)算,那么您可以為自己的IBMPC-AT購(gòu)買一臺(tái)80387數(shù)學(xué)協(xié)同處理器。接下來(lái)是80486,英特爾就將數(shù)學(xué)協(xié)同處理器集成到CPU中進(jìn)行了各種嘗試。隨后,CPU慢慢獲得了安全擴(kuò)展、內(nèi)存控制器和GPU等功能。

因此,就和其他所有技術(shù)一樣,這一新興人工智能芯片行業(yè)也無(wú)法將存在眾多競(jìng)爭(zhēng)對(duì)手的局面維持太久。例如,OTAS的多里斯指出,許多沒(méi)有進(jìn)入市場(chǎng)的內(nèi)部芯片會(huì)成為高級(jí)技術(shù)人員的個(gè)人愛(ài)好項(xiàng)目,而制度的改變通常意味著采用行業(yè)標(biāo)準(zhǔn)。Intersect360的斯內(nèi)爾指出,如今的人工智能芯片初創(chuàng)企業(yè)大軍也會(huì)縮水。正如他所說(shuō),“這個(gè)行業(yè)目前有太多競(jìng)爭(zhēng)對(duì)手,因而需要進(jìn)行整合?!逼渲性S多公司可能只是想要開(kāi)辟出一個(gè)利基市場(chǎng),以此吸引大公司來(lái)收購(gòu)它們。

IBM的麥克雷迪說(shuō)道:“我同意,這將是一場(chǎng)艱難的競(jìng)賽,但規(guī)模必須縮小?!庇幸惶欤@可能意味著這一新型芯片領(lǐng)域看起來(lái)會(huì)和過(guò)往的芯片領(lǐng)域并無(wú)兩樣:x86、英偉達(dá)GPU、ARM世界之類的。但就目前而言,這場(chǎng)人工智能芯片競(jìng)賽只是剛剛開(kāi)始,并且眾多參賽者都打算繼續(xù)奮勇向前。

中傳動(dòng)網(wǎng)版權(quán)與免責(zé)聲明:

凡本網(wǎng)注明[來(lái)源:中國(guó)傳動(dòng)網(wǎng)]的所有文字、圖片、音視和視頻文件,版權(quán)均為中國(guó)傳動(dòng)網(wǎng)(www.wangxinlc.cn)獨(dú)家所有。如需轉(zhuǎn)載請(qǐng)與0755-82949061聯(lián)系。任何媒體、網(wǎng)站或個(gè)人轉(zhuǎn)載使用時(shí)須注明來(lái)源“中國(guó)傳動(dòng)網(wǎng)”,違反者本網(wǎng)將追究其法律責(zé)任。

本網(wǎng)轉(zhuǎn)載并注明其他來(lái)源的稿件,均來(lái)自互聯(lián)網(wǎng)或業(yè)內(nèi)投稿人士,版權(quán)屬于原版權(quán)人。轉(zhuǎn)載請(qǐng)保留稿件來(lái)源及作者,禁止擅自篡改,違者自負(fù)版權(quán)法律責(zé)任。

如涉及作品內(nèi)容、版權(quán)等問(wèn)題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。

關(guān)注伺服與運(yùn)動(dòng)控制公眾號(hào)獲取更多資訊

關(guān)注直驅(qū)與傳動(dòng)公眾號(hào)獲取更多資訊

關(guān)注中國(guó)傳動(dòng)網(wǎng)公眾號(hào)獲取更多資訊

最新新聞
查看更多資訊

熱搜詞
  • 運(yùn)動(dòng)控制
  • 伺服系統(tǒng)
  • 機(jī)器視覺(jué)
  • 機(jī)械傳動(dòng)
  • 編碼器
  • 直驅(qū)系統(tǒng)
  • 工業(yè)電源
  • 電力電子
  • 工業(yè)互聯(lián)
  • 高壓變頻器
  • 中低壓變頻器
  • 傳感器
  • 人機(jī)界面
  • PLC
  • 電氣聯(lián)接
  • 工業(yè)機(jī)器人
  • 低壓電器
  • 機(jī)柜
回頂部
點(diǎn)贊 0
取消 0